Intermediate Topics in Machine Learning & Deep Learning

Alexander Ioannidis ioannidis@stanford.edu

Institute for Computational and Mathematical Engineering, Stanford University

Intermediate Topics in Machine Learning and Deep Learning

Schedule

Day 1

Session 1: Intermediate Topics in ML (SVMs and Kernels) Session 2: Transfer Learning & Generating Labels for Deep Learning

Day 2

Session 3: Dimensionality Reduction and Variational Autoencoders (VAEs) Session 4: Representation Learning, Weakly Supervised, Semi-supervised, and self-supervised learning

Support Vector Machines

- Method for supervised classification
 - Binary classification (two class)

- Generalization of *maximal margin classifier*
- Support vector classifier: can be applied to data that is not linearly separable
- *Support vector machine*: non-linear decision boundary

- Maximal margin classifier
 - Key assumption: two classes are separable by linear decision boundary

• First, we need to review *hyperplanes*...

Hyperplanes

- What is a hyperplane?
 - In d-dimensional space, a (d-1)-dimensional affine subspace
 - e.g. line in 2D, plane in 3D
 - Hyperplane in *d*-dimensional space:

 $(\star) \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_d x_d = 0$

Separates space into two half-spaces

Hyperplanes

 $-7 + 2x_1 - x_2 = 0$

 $4 + 9x_1 + 6x_2 - 2x_3 = 0$

Idea:

Use a separating hyperplane for binary classification

Key assumption:

Classes can be separated by a linear decision boundary

Figure 9.2 , ISL 2013

To classify new data points:

Assign class by location of new data point with respect to hyperplane:

$$\hat{Y} = \operatorname{sign} \left(\beta_0 + \beta_1 X_1 + \dots + \beta_d X_d\right)$$

Key assumption:

Classes can be separated by a linear decision boundary

→ Many possible separating hyperplanes...

Figure 9.2 , ISL 2013

Mini Quiz:

Which linear decision boundary?

What criteria would you use to choose?

Figure 9.2 , ISL 2013

Which linear decision boundary?

Separating hyperplane "farthest" from training data

 \rightarrow "Maximal Margin Classifier"

Figure 9.2, 9.3 , ISL 2013

Maximal margin hyperplane

Hyperplane "farthest" from training data \rightarrow maximizes margin

Margin: smallest distance between any training observation and the hyperplane

Support vectors: the training observations equidistant from the hyperplane

Figure 9.3 , ISL 2013

- Support vectors
 - The training observations equidistant from the maximal margin (MM) hyperplane
 - "Support": MM hyperplane only depends on these observations
 - If support vectors are perturbed, then MM hyperplane will change
 - If any other training observations are perturbed, MM hyperlane not effected

• To find maximal margin hyperplane, solve:

Recall our assumption:

Classes can be separated by a linear decision boundary

What if there's no separating hyperplane?

Figure 9.4 , ISL 2013

Disadvantage:

Figure 9.5 , ISL 2013

Disadvantage:

Can be sensitive to individual observations

May overfit training data

Figure 9.5 , ISL 2013

What if there's no separating hyperplane?

Support Vector Classifier:

allows training samples on the "wrong side" of the margin or hyperplane

Figure 9.4 , ISL 2013

- Support Vector Classifier
 - Hyperplane-based classifier
 - Allows *som*e training samples on "wrong side" of margin/hyperplane
 - Soft margin: margin is not a hard boundary

Figure 9.6 , ISL 2013

 X_1

- Support Vector Classifier
 - Hyperplane-based classifier
 - Allows *som*e training samples on "wrong side" of margin/hyperplane
 - Soft margin: margin is not a hard boundary

- Idea: solve maximal margin problem, but allow violations of the margin
 - Impose penalty to limits number/degree of violations

• To find hyperplane for the SV classifier, solve:

- Slack variables ε_i allow for violations of the margin
 - $\varepsilon_i = 0$: training point $X^{(i)}$ is on correct side of margin
 - $\varepsilon_i > 0$: $X^{(i)}$ violates the margin
 - $\varepsilon_i > 1$: $X^{(i)}$ is misclassified (wrong side of hyperplane)

- Penalty parameter C "budget" for violations
 - Allows at most C misclassifications on training set

"Misclassification budget" parameter C is selected by cross-validation * controls bias-variance trade-off *

Support vectors: observations on margin or violating margin

Large budget many Support Vectors Small budget fewer Support Vectors

Figure 9.7 , ISL 2013

Disadvantage:

Linear decision boundary

Figure 9.8 , ISL 2013

Expanding Feature Space

Some data sets are not linearly separable...

But they *become* linearly separable when transformed into a *higher* dimensional space

Expanding Feature Space

Expanding Feature Space

- Linear regression \rightarrow non-linear model
 - Create new features that are functions of predictors

- Apply same technique to support vector classifier
 - Consider polynomial functions of predictors:

• Suppose our original data has d features:

$$X = [X_1, X_2, \cdots, X_d]$$

• Expand feature space to include 2d features:

$$\tilde{X} = \begin{bmatrix} X_1, (X_1)^2, X_2, (X_2)^2, \cdots, X_d, (X_d)^2 \end{bmatrix}$$

$$\tilde{X}_1, \tilde{X}_2, \tilde{X}_3, \tilde{X}_4, \tilde{X}_4, \tilde{X}_2, \tilde{X}_3, \tilde{X}_4$$

Decision boundary will be non-linear in original feature space

• Decision boundary in enlarged features space is linear:

$$\beta_0 + \beta_1 \tilde{X}_1 + \beta_2 \tilde{X}_2 + \dots + \beta_{2d-1} \tilde{X}_{2d-1} + \beta_{2d} \tilde{X}_{2d} = 0$$

• Decision boundary in enlarged features space is an ellipse *in the original features space*:

$$\beta_0 + \beta_1 X_1 + \beta_2 (X_1)^2 + \dots + \beta_{2d-1} X_d + \beta_{2d} (X_d)^2 = 0$$

- Add higher order polynomial terms to expanded features set
 → number of features grows quickly
 - Large number of features becomes computationally challenging
 - We need an efficient way to work with large number of features

Support Vector Machine (SVM)

Support Vector Machine: extension that uses kernels to achieve nonlinear decision boundary

Support Vector Machine

• *Kernel*: generalization of inner product

- Kernels (implicitly) map data into higher-dimensional space
 - Apply support vector classifier in high-dimensional space with hyperplane (linear) decision boundary

 Computations in support vector classifier requires only inner products of training data

$$f(X) = \beta + \sum_{i \in S} \alpha_i \langle X^{(i)}, X \rangle$$

• In SVM we replace inner product with kernel function

$$f(X) = \beta + \sum_{i \in S} \alpha_i K\left(X^{(i)}, X\right)$$

- Properties of kernels *K*(*X*, *X'*):
 - Generalization of inner product
 - $K(X, X') = \langle \phi(X), \phi(X') \rangle, \quad \phi \text{ feature mapping}$
 - Symmetric: K(X, X') = K(X', X)
 - Gives a measure of similarity between X and X'
 - If X and X' close together, then K(X, X') large
 - If X and X' far apart, then K(X, X') small

• Linear kernel

$$K(X, X') = \langle X, X' \rangle$$

• Polynomial kernel (degree p)

$$K(X, X') = (1 + \langle X, X' \rangle)^p$$

• Radial basis kernel

$$K(X, X') = \exp\left(-\gamma \|X - X'\|^2\right)$$

- Why use kernels instead of explicitly constructing larger feature space?
 - Computational advantage

$$\phi : \mathbb{R}^d \to \mathbb{R}^D, \quad d \ll D$$
$$K(X, X') = \langle \phi(X), \phi(X') \rangle \quad \text{in } O(d)$$

- Other machine learning methods use kernels
 - e.g. kernel PCA

• Example: polynomial kernel, p = 2, d = 2:

$$K(X,Y) = (1 + \langle X,Y \rangle)^2$$
 $X = \begin{bmatrix} X_1\\X_2 \end{bmatrix}$

Then

 $K(X,Y) = 1 + 2X_1Y_1 + 2X_2Y_2 + X_1^2Y_1^2 + X_2^2Y_2^2 + 2X_1Y_1X_2Y_2$ $= \langle \phi(X), \phi(Y) \rangle$ where $\phi(X) = \begin{bmatrix} 1\\ \sqrt{2}X_1\\ \sqrt{2}X_2\\ \sqrt{2}X_1X_2\\ \sqrt{2}X_1X_2\\ X_1^2\\ X_2^2 \end{bmatrix}$

- Advantages
 - Regularization parameter C to avoid overfitting
 - Use of kernel gives flexibility in form of decision boundary
 - Optimization problem convex unique solution
- Disadvantages
 - Must tune hyperparameters (e.g. C, kernel function)
 - Poor performance if not well-chosen
 - Must formulate as binary classification
 - Difficult to interpret

Questions?

SVM with 3+ classes

- SVMs are designed for binary classification
 - Separating hyperplane naturally separates data into two classes
- How do we handle the case when the data belong to more than two classes?
- Popular approaches:
 - 1. One-versus-one
 - 2. One-versus-all

SVM with 3+ classes

- One-versus-one classification
 - Construct an SVM for each pair of classes
 - For K classes, this requires training $\frac{K(K-1)}{2}$ SVMs
 - To classify a new observation, apply all $\frac{\tilde{K}(K-1)}{2}$ SVMs to the observation take the most frequent class among pairwise results as predicted class
 - Disadvantage: computationally expensive for large values of K

SVM with 3+ classes

- One-versus-all classification
 - Fit K SVMs, in which class k represents one class, and the remaining K 1 classes are combined to form the second class
 - Distance to separating hyperplane is a proxy for confidence of the classification
 - For new observation, choose "highest confidence" class to make prediction

Questions?

- Imbalanced classes: one class (+) occurs significantly more frequently in training set than the other (-)
 - e.g. fraud detection, medical database
- Why is this a problem?
 - Algorithms perform best when trained on roughly even numbers of observations in each class
 - Poor performance on underrepresented class

- How can we improve performance when we have imbalanced classes?
 - Collect more data for underrepresented class
 - Weighting of classes
 - Sampling methods

- Weighting of classes: applying different weights to false negatives in cost function
 - e.g. in SVM, larger weights to penalties for violations of margin for class (-) than for class (+):

$$\sum_{i=1}^{n} \epsilon_{i} < C \quad \text{becomes}$$
$$\left(\sum_{i: Y^{(i)}=(+)} \epsilon_{i}\right) + \omega \left(\sum_{i: Y^{(i)}=(-)} \epsilon_{i}\right) < C$$

- Sampling Methods modify set of training observations to make classes more even
- Balance class labels by
 - Undersampling class (+)
 - Oversampling class (-)

- Disadvantages of over/under sampling
 - Undersampling class (+) may remove important training observations

- Disadvantages of over/under sampling
 - Oversampling class (-) may result in over fitting

- Synthetic Minority Oversampling
 - Method for oversampling class (-) that generates new minority observations by perturbing existing minority observations:
 - 1. Selects observation $X^{(-)}$ in class (-) at random
 - 2. Finds k nearest neighbors of $X^{(-)}$ selects one of the neighbors $X_{nn}^{(-)}$ at random
 - 3. New sample $X_{new}^{(-)}$ is a perturbation of $X^{(-)}$ along the direction $X_{nn}^{(-)} X^{(-)}$

- In regression, we can use a criterion such as the residual sum of squares to measure error
- For classification, we need a measure of performance
 - Examples: Confusion matrix, Precision/Recall, Sensitivity/Specificity, ROC curve
- Consider binary classification with classes: (+) and (–)

- We can show the performance of the classifier in a table called a *confusion matrix*:
 - "Good performance": TP, TN large and FP, FN small

Precision/recal

• ROC (receiver operating characteristic) curve

- Disadvantage of ROC curve imbalanced classes
 - 1% samples belong to class "+" and 99% to class "-"
 - For results below then, TPR = **0.9**, FPR = **0.12 Cooks good**?
 - TPR and FPR do not capture that **13x as many FP as TP**
 - Alternative: Precision = 0.07 (perfect: 1.0), Recall = TPR = 0.9

Precision / Recall

- Precision: fraction of samples predicted (+) that are actually (+)
- Recall (true positive rate): Fraction of (+) samples correctly predicted as (+)
- Imbalanced class example:
 - Precision = 0.07 (perfect: 1.0), Recall = TPR = 0.9 (perfect: 1.0)

- Precision/recall
 - Precision (Positive predictive value): $PPV = \frac{TP}{TP + FP}$
 - Fraction of samples predicted as (+) that are truly (+)
 - Recall (True positive rate): $TPR = \frac{TP}{TP+FN} = \frac{TP}{P}$
 - Fraction of (+) samples correctly classified as (+)
 - Recall and precision inversely related
 - In perfect classifier, Recall = 1, Precision = 1
 - Imbalanced class example: Recall = 0.9, Precision = 0.07

