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Day 1

Day 2

Schedule

Session 1: Intermediate Topics in ML (SVMs and Kernels)
Session 2: Transfer Learning & Generating Labels for Deep Learning

Session 3: Dimensionality Reduction and Variational Autoencoders (VAEs)
Session 4: Representation Learning, Weakly Supervised, Semi-supervised,
and self-supervised learning



Support Vector Machines

 Method for supervised classification
— Binary classification (two class)

* Generalization of maximal margin classifier

* Support vector classifier: can be applied to data that is
not linearly separable

e Support vector machine: non-linear decision boundary
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Maximal Margin Classifier

 Maximal margin classifier

— Key assumption: two classes are separable by linear
decision boundary

* First, we need to review hyperplanes...
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Hyperplanes

* What is a hyperplane?

— In d-dimensional space, a (d—1)-dimensional affine
subspace
e e.g.linein 2D, planein 3D

— Hyperplane in d-dimensional space:

(*) Bo + B1x1 + Boxg + -+ + Bagxqg =0

— Separates space into two half-spaces
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Hyperplanes
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Separating Hyperplane Classifier

Idea:
Use a separating hyperplane
for binary classification

Key assumption:
Classes can be separated by a
linear decision boundary

Figure 9.2, ISL 2013
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Separating Hyperplane Classifier

To classify new data points:

Assign class by location of new
data point with respect to
hyperplane:

A

Y =sign(Bo + f1X1+ - + BaXa)

Figure 9.2, ISL 2013
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Separating Hyperplane Classifier

Key assumption:
Classes can be separated by a
linear decision boundary

- Many possible separating
hyperplanes...

Figure 9.2, ISL 2013
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Which linear decision
boundary?

What criteria would you use to choose?

Figure 9.2, ISL 2013
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Separating Hyperplane Classifier

Which linear decision
boundary?

Separating hyperplane
“farthest” from training data

)

- “Maximal Margin Classifier’

Figure 9.2,9.3, ISL 2013
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Maximal Margin Classifier

Maximal margin hyperplane

Hyperplane “farthest” from
training data = maximizes margin

Margin: smallest distance between any
training observation and the hyperplane

Support vectors: the training observations
equidistant from the hyperplane

Figure 9.3, ISL 2013
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Maximal Margin Classifier

* Support vectors

— The training observations equidistant from the maximal margin (MM)
hyperplane

— “Support”: MM hyperplane only depends on these observations
* |If support vectors are perturbed, then MM hyperplane will change

* If any other training observations are perturbed, MM hyperlane not effected



Maximal Margin Classifier

* To find maximal margin hyperplane, solve:

(;30,...,.,13(1)

7=0

maximize N <€——— maximize the margin, M

d
e § 2 _ { e—
bUbJeCt to BJ =1 defined optimization problem

VO (B0 + BiX]") + o+ BuX ) > M, i

constraint necessary for well-

Yy ¢ {—1. 1} are the class labels

\ all training points must be
distance at least M from

hyperplane




Maximal Margin Classifier

Recall our assumption:

Classes can be separated by a
linear decision boundary

What if there’s no separating
hyperplane?

Figure 9.4, ISL 2013
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Maximal Margin Classifier

Disadvantage:

Figure 9.5, ISL 2013
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Maximal Margin Classifier

Disadvantage:

Can be sensitive to individual
observations

May overfit training data

Figure 9.5, ISL 2013
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Support Vector Classifier

What if there’s no separating
hyperplane?

Support Vector Classifier:
allows training samples on the
“wrong side” of the margin or
hyperplane

Figure 9.4, ISL 2013
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Support Vector Classifier

* Support Vector Classifier

— Hyperplane-based classifier
— Allows some training samples on “wrong side” of margin/hyperplane
— Soft margin: margin is not a hard boundary
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Support Vector Classifier

Figure 9.6, ISL 2013 \,
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Support Vector Classifier

* Support Vector Classifier
— Hyperplane-based classifier
— Allows some training samples on “wrong side” of margin/hyperplane
— Soft margin: margin is not a hard boundary

* Idea: solve maximal margin problem, but allow violations of
the margin

— Impose penalty to limits number/degree of violations
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Support Vector Classifier

* To find hyperplane for the SV classifier, solve:

maximize the margin, M

1naximize constraint necessary for well-

(Bo,....0d,€1-...€n) / defined optimization problem
| |
=1

d
subject to j training points less than distance M
7=0 from hyperplane pay a penalty &;

penalties

: i i —
limit on total | Y7 (?) (;,.30 + B X 4o X )) > M(1Ze).

\

n
) e <C e; >0, Vi /
1=1

T “slack” variable &,
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Support Vector Classifier

* Slack variables ¢; allow for violations of the margin
— &= 0: training point X is on correct side of margin
— &> 0: X violates the margin

— &> 1: X is misclassified (wrong side of hyperplane)

* Penalty parameter C— “budget” for violations

— Allows at most C misclassifications on training set
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Support Vector Classifier

“Misclassification budget”
parameter C is selected by

cross-validation
* controls bias-variance trade-off *

Support vectors: observations
on margin or violating margin

Large budget Small budget
Figure 9.7, 1SL 2013 many Support Vectors fewer Support Vectors
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Support Vector Classifier

Disadvantage:

Linear decision boundary

Figure 9.8, ISL 2013
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Expanding Feature Space

Some data sets are not linearly separable...

x x ox o ox ¢+ s e But they become linearly separable when
x xox x o o o o transformed into a higher dimensional space

0
X1

variables: X1, X,



Expanding Feature Space
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Expanding Feature Space

* Linear regression = non-linear model

— Create new features that are functions of predictors

* Apply same technique to support vector classifier

— Consider polynomial functions of predictors:
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Non-linear Decision Boundary
* Suppose our original data has d features:
X = [X17X27' o 7Xd]

* Expand feature space to include 2d features:

X — [\Xl,l(\Xl) XQ,(XQ) . Xd,(Xd) ]

J \

X1 Xo X3 X4 X2d 1 X2d
— Decision boundary will be non-linear in original feature space
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Non-linear decision boundary

* Decision boundary in enlarged features space is linear:

Bo + B1 X1+ BaXo + -+ Paa—1Xoqg—1 + B2aX2q =0

* Decision boundary in enlarged features space is an ellipse in
the original features space:

Bo + B1X1 4 B2(X1)2 4+ -+ + Bag—1Xg + P2a(Xg)? =0
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Non-linear Decision Boundary

* Add higher order polynomial terms to expanded features set
- number of features grows quickly

— Large number of features becomes computationally challenging

— We need an efficient way to work with large number of features
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Support Vector Machine (SVM)

Support Vector Machine:
extension that uses
kernels to achieve non-
linear decision boundary
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Support Vector Machine

* Kernel: generalization of inner product

» Kernels (implicitly) map data into higher-dimensional space

— Apply support vector classifier in high-dimensional space with
hyperplane (linear) decision boundary
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Support Vector Machine

 Computations in support vector classifier requires only inner
products of training data

FX)=8+) (XD X)

1€S
* In SVM we replace inner product with kernel function

FX) =8+ aK (X“),X)

1€S
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Support Vector Machine
* Properties of kernels K(X, X):

— Generalization of inner product
K(X,X') = ($(X),$(X")), ¢ feature mapping

— Symmetric: K(X, X') = K(X; X)

— Gives a measure of similarity between Xand X’
* If Xand X’close together, then K(X, X’) large
* If Xand X’ far apart, then K(X, X’) small
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Support Vector Machine

* Linear kernel
K(X,X’) = <X,X’>
* Polynomial kernel (degree p)
K(X,X") =1+ (X, X"))"
* Radial basis kernel

K(X,X') =exp (—]| X — X'||?)
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Support Vector Machine

 Why use kernels instead of explicitly constructing
larger feature space?
— Computational advantage
¢:R¥ - RP, d<<D
K(X,X') = (¢(X),¢(X")) inO(d)
* Other machine learning methods use kernels
— e.g. kernel PCA
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 Example: polynomial kernel, p =2, d = 2:
_ 2 X1
K(X,Y) = (1+(X,Y)) X:[ ]
X2
Then

K(X,)Y)=1+2X1Y1 +2XoYs + X7Y? + X3Y5 +2X1YV1 XoYs
!

where ¢(X) = \/—\Q/E(‘j%@
X3
L X5




Support Vector Machine




Support Vector Machine

* Advantages
— Regularization parameter C to avoid overfitting
— Use of kernel gives flexibility in form of decision boundary
— Optimization problem convex — unique solution

* Disadvantages

— Must tune hyperparameters (e.g. C, kernel function)
* Poor performance if not well-chosen

— Must formulate as binary classification
— Difficult to interpret

T | 1

"" ?A



Questions?



SVM with 3+ classes

* SVMs are designed for binary classification
— Separating hyperplane naturally separates data into two classes

* How do we handle the case when the data belong to more
than two classes?

* Popular approaches:
1. One-versus-one
2. One-versus-all
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SVM with 3+ classes

e One-versus-one classification

— Construct an SVM for each pair of classes
K(K—-1)

SVMs

— To classify a new observation, apply all K(K-1) SVMs

to the observation — take the most frequent class
among pairwise results as predicted class

— Disadvantage: computationally expensive for large
values of K

— For K classes, this requires training
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SVM with 3+ classes

* One-versus-all classification

— Fit K SVMs, in which class k represents one class, and
the remaining K — 1 classes are combined to form the
second class

— Distance to separating hyperplane is a proxy for
confidence of the classification

— For new observation, choose “highest confidence”
class to make prediction
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Questions?






Imbalanced Classes

* Imbalanced classes: one class (+) occurs significantly
more frequently in training set than the other (—)
— e.g. fraud detection, medical database

* Why is this a problem?

— Algorithms perform best when trained on roughly even
numbers of observations in each class

— Poor performance on underrepresented class
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Imbalanced Classes

* How can we improve performance when we
have imbalanced classes?
— Collect more data for underrepresented class
— Weighting of classes
— Sampling methods
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Imbalanced Classes

* Weighting of classes: applying different weights to false
negatives in cost function

— e.g.in SVM, larger weights to penalties for violations of margin for
class (—) than for class (+):

n
Z €, <C becomes
i=1
( Z El-)-l— w( z ei><C
i: YO=(4) i Y O=(-)
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Imbalanced Classes

 Sampling Methods — modify set of training
observations to make classes more even
e Balance class labels by

— Undersampling class (+)

— Oversampling class (—)
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Imbalanced Classes

* Disadvantages of over/under sampling
— Undersampling class (+) may remove important training

observations
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Imbalanced Classes

* Disadvantages of over/under sampling
— Oversampling class (—) may result in over fitting
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Imbalanced Classes

* Synthetic Minority Oversampling

— Method for oversampling class (—) that generates new minority
observations by perturbing existing minority observations:

1. Selects observation X (™) in class (—) at random
2. Finds k nearest neighbors of X(7) selects one of the neighbors
X,ﬁ,‘,} at random

3. New sample x$) s a perturbation of X(7) along the

new

direction X,(l;) - X&)
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Imbalanced Classes
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Imbalanced Classes
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Imbalanced Classes
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Imbalanced Classes
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Imbalanced Classes
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Imbalanced Classes
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Measuring Classifier Performance

* |n regression, we can use a criterion such as the
residual sum of squares to measure error

* For classification, we need a measure of performance

— Examples: Confusion matrix, Precision/Recall,
Sensitivity/Specificity, ROC curve

* Consider binary classification with classes: (+) and (-)
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Measuring Classifier Performance

* We can show the performance of the classifier in a
table called a confusion matrix:

— “Good performance”: TP, TN large and FP, FN small

Predicted class
+ —

False Negative (FN)
Type Il error

<+ True Positive (TP)
True class

— False positive (FP)

T N i
T P rue Negative (TN)

» a 1
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Measuring Classifier Performance

True positive rate (TPR)

(recall, sensitivity)
Predicted class

Positive predictive value (PPV) (precision)

Predicted class

+ - + —
PPV = ——
4| TP | FN TPR = — +| TP | FN TP + FP
v 4 TP + FN v A
S5 @© E ©
= GCe—| FP TN = G=| FP TN
False positive rate (FPR) True negative rate (SPC)
(specificity)
Predicted class Predicted class
+ — + —
o ot | TP | FN FPR=————| 4 o+| TP | FN SPC=——H
= 4 FP+ TN = 4 FP+ TN
= o=l Fr | TN = o=| FP | TN




ROC curve

Measurin

True positive rate (TPR)

(recall, sensitivity)

Predicted class

<+

TP

FN

FP

TN

False

positive rate (FPR)

Predicted class

+

TP

FN

FP

TN

Classifier Performance

Positive predictive value (PPV) (precision)

True

class

Predicted class

<+

-+

TP

FN

-+

FP

TN

True negative rate (SPC)

(specificity)

Predicted class

+ -—
TP | FN
FP | TN

PPV = ———
V= Thyrp

SPC = ——
FP+TN
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Measuring Classifier Performance

* ROC (receiver operating characteristic) curve

perfectﬂ Classifier A — monotqnic
classification Increasing
Classifier
True Positive
Rate TPR TP
TP+ FN
FPR = £P
0 FP+TN

0 False Positive Rate 1



Measuring Classifier Performance

* Disadvantage of ROC curve - imbalanced classes

o 7

— 1% samples belong to class “+” and 99% to class

* For results below then, TPR =0.9, FPR=0.12 < looks good?
 TPR and FPR do not capture that 13x as many FP as TP
* Alternative: Precision = 0.07 (perfect: 1.0), Recall = TPR =0.9

Predicted class
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Measuring Classifier Performance

Precision / Recall
* Precision: fraction of samples predicted (+) that are actually (+)
* Recall (true positive rate): Fraction of (+) samples correctly predicted as (+)

* Imbalanced class example:
* Precision = 0.07 (perfect: 1.0), Recall = TPR = 0.9 (perfect: 1.0)

Predicted class

ERES
s | o1z

True
class




Measuring Classifier Performance

* Precision/recall
TP

— Precision (Positive predictive value): PPV =
TP+FP

* Fraction of samples predicted as (+) that are truly (+)
— Recall (True positive rate): TPR=——=12
TP+FN P
* Fraction of (+) samples correctly classified as (+)
— Recall and precision inversely related
— In perfect classifier, Recall = 1, Precision =1

— Imbalanced class example: Recall = 0.9, Precision = 0.07

Predicted class
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