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Schedule

Day 1

Session 1: Intermediate Topics in ML (SVMs and Kernels)

Session 2: Transfer Learning & Generating Labels for Deep Learning

Day 2

Session 3: Dimensionality Reduction and Variational Autoencoders (VAEs)

Session 4: Representation Learning, Weakly Supervised, Semi-supervised, 

and self-supervised learning



Support	Vector	Machines
• Method	for	supervised	classification
– Binary	classification	(two	class)

• Generalization	of	maximal	margin	classifier
• Support	vector	classifier:	can	be	applied	to	data	that	is	

not	linearly	separable
• Support	vector	machine:	non-linear	decision	boundary

	 	 	    



Maximal	Margin	Classifier
• Maximal	margin	classifier	
– Key	assumption:	two	classes	are	separable	by	linear	
decision	boundary

• First,	we	need	to	review	hyperplanes…

	 	 	 	



Hyperplanes
• What	is	a	hyperplane?
– In	d-dimensional	space,	a	(d−1)-dimensional	affine	
subspace
• e.g.	line	in	2D, plane	in	3D

– Hyperplane in	d-dimensional	space:

– Separates	space	into	two	half-spaces
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4+ 9x1+ 6x2− 2x3 > 0



Separating	Hyperplane Classifier

	 	 	

Figure	9.2	,	ISL	2013

Idea:	
Use	a	separating	hyperplane
for	binary	classification

Key	assumption:	
Classes	can	be	separated	by	a	
linear	decision	boundary



Separating	Hyperplane Classifier

	 	 	

Figure	9.2	,	ISL	2013

To	classify	new	data	points:	

Assign	class	by	location	of	new	
data	point	with	respect	to	
hyperplane:



Separating	Hyperplane Classifier

	 	 	

Figure	9.2	,	ISL	2013

Key	assumption:	
Classes	can	be	separated	by	a	
linear	decision	boundary

àMany	possible	separating	
hyperplanes…



Mini	Quiz:

	 	 	

Figure	9.2	,	ISL	2013

Which linear	decision	
boundary?
What	criteria	would	you	use	to	choose?



Separating	Hyperplane Classifier

	 	 	

Figure	9.2,	9.3	,	ISL	2013

Which linear	decision	
boundary?

Separating	hyperplane
“farthest”	from	training	data

à “Maximal	Margin	Classifier”



Maximal	Margin	Classifier

	 	 	

Figure	9.3	,	ISL	2013

Maximal	margin	hyperplane

Hyperplane “farthest”	from	
training	data	àmaximizes	margin

Margin:	smallest	distance	between	any	
training	observation	and	the	hyperplane

Support	vectors:	the	training	observations	
equidistant	from	the	hyperplane



Maximal	Margin	Classifier
• Support	vectors

– The	training	observations	equidistant	from	the	maximal	margin	(MM)	
hyperplane

– “Support”:	MM	hyperplane only	depends	on	these	observations
• If	support	vectors	are	perturbed,	then	MM	hyperplane will	change
• If	any	other	training	observations	are	perturbed,	MM	hyperlane not	effected

	 	 	



Maximal	Margin	Classifier
• To	find	maximal	margin	hyperplane,	solve:

	 	 	

are	the	class	labels

constraint	necessary	for	well-
defined	optimization	problem

maximize	the	margin,	M

all	training	points	must	be	
distance	at	least	M	from	
hyperplane



Maximal	Margin	Classifier

	 	 	

Figure	9.4	,	ISL	2013

Recall	our	assumption:

Classes	can	be	separated	by	a	
linear	decision	boundary

What	if	there’s	no	separating	
hyperplane?



Maximal	Margin	Classifier

	 	 	

Figure	9.5	,	ISL	2013

Disadvantage:



Maximal	Margin	Classifier

	 	 	

Figure	9.5	,	ISL	2013

Disadvantage:

Can	be	sensitive	to	individual	
observations

May	overfit training	data



Support	Vector	Classifier

	 	 	

Figure	9.4	,	ISL	2013

What	if	there’s	no	separating	
hyperplane?

Support	Vector	Classifier:
allows	training	samples	on	the	
“wrong	side”	of	the	margin	or	
hyperplane



Support	Vector	Classifier
• Support	Vector	Classifier

– Hyperplane-based	classifier	
– Allows	some	training	samples	on	“wrong	side”	of	margin/hyperplane
– Soft	margin:	margin	is	not	a	hard	boundary

• Idea:	solve	maximal	margin	problem,	but	allow	violations	of	
the	margin	
– Impose	penalty	to	limits	violations

	 	 	



Support	Vector	Classifier

	 	 	

Figure	9.6	,	ISL	2013



Support	Vector	Classifier
• Support	Vector	Classifier

– Hyperplane-based	classifier	
– Allows	some	training	samples	on	“wrong	side”	of	margin/hyperplane
– Soft	margin:	margin	is	not	a	hard	boundary

• Idea:	solve	maximal	margin	problem,	but	allow	violations	of	
the	margin	
– Impose	penalty	to	limits	number/degree	of	violations

	 	 	



Support	Vector	Classifier
• To	find	hyperplane for	the	SV	classifier,	solve:

	 	 	

constraint	necessary	for	well-
defined	optimization	problem

maximize	the	margin,	M

training	points	less	than	distance	M	
from	hyperplane pay	a	penalty	εi

limit	on	total	
penalties

“slack”	variable	εi



Support	Vector	Classifier
• Slack	variables	εi allow	for	violations	of	the	margin

– εi=	0	:		training	point	X(i) is	on	correct	side	of	margin

– εi>	0	:		X(i) violates	the	margin

– εi>	1	:	X(i) is	misclassified	(wrong	side	of	hyperplane)

• Penalty	parameter	C	– “budget”	for	violations
– Allows	at	most	C	misclassifications	on	training	set

	 	 	



Support	Vector	Classifier

	 	 	

Figure	9.7	,	ISL	2013

“Misclassification	budget”	
parameter	C	is	selected	by	
cross-validation
*	controls	bias-variance	trade-off	*

Support	vectors:	observations	
on	margin	or	violating	margin

Large	budget
many	Support	Vectors

Small	budget
fewer	Support	Vectors



Support	Vector	Classifier

	 	 	

Figure	9.8	,	ISL	2013

Disadvantage:

Linear	decision	boundary



Some	data	sets	are	not	linearly	separable…

But	they	become linearly	separable	when	
transformed	into	a	higher dimensional	space

variables:	X1 ,	X2

Expanding	Feature	Space

	 	 	



variables:	X1 ,	X2

Expanding	Feature	Space

	 	 	

variables:	X1 ,	X2,	X1X2



Expanding	Feature	Space
• Linear	regression	à non-linear	model	
– Create	new	features	that	are	functions	of	predictors

• Apply	same	technique	to	support	vector	classifier
– Consider	polynomial	functions	of	predictors:

	 	 	



Non-linear	Decision	Boundary
• Suppose	our	original	data	has	d	features:

	 	 	

• Expand	feature	space	to	include	2d	features:

– Decision	boundary	will	be	non-linear	in	original	feature	space



Non-linear	decision	boundary
• Decision	boundary	in	enlarged	features	space	is	linear:

	 	 	

• Decision	boundary	in	enlarged	features	space	is	an	ellipse	in	
the	original	features	space:



Non-linear	Decision	Boundary

	 	 	



Non-linear	Decision	Boundary

	 	 	



Non-linear	Decision	Boundary

	 	 	



Non-linear	Decision	Boundary
• Add	higher	order	polynomial	terms	to	expanded	features	set	

à number	of	features	grows	quickly

– Large	number	of	features	becomes	computationally	challenging

– We	need	an	efficient	way	to	work	with	large	number	of	features

	 	 	



Support	Vector	Machine	(SVM)

	 	 	

Support	Vector	Machine:
extension	that	uses	
kernels to	achieve	non-
linear	decision	boundary	



Support	Vector	Machine
• Kernel:		generalization	of	inner	product

• Kernels	(implicitly)	map	data	into	higher-dimensional	space	
– Apply	support	vector	classifier	in	high-dimensional	space	with	

hyperplane (linear)	decision	boundary

	 	 	



Support	Vector	Machine
• Computations	in	support	vector	classifier	requires	only	inner	

products	of	training	data

	 	 	

• In	SVM	we	replace	inner	product	with	kernel	function



Support	Vector	Machine
• Properties	of	kernels	K(X,	X’):	
– Generalization	of	inner	product

– Symmetric:	K(X,	X’)	 =		K(X’,	X)	
– Gives	a	measure	of	similarity	between X	and	X’

• If	X	and	X’	close	together,	then	K(X,	X’)	large
• If	X	and	X’	 far	apart,	then	K(X,	X’)	small

	 	 	



Support	Vector	Machine
• Linear	kernel

• Polynomial	kernel	(degree	p)

• Radial	basis	kernel

	 	 	



Support	Vector	Machine
• Why	use	kernels	instead	of	explicitly	constructing	
larger	feature	space?
– Computational	advantage

• Other	machine	learning	methods	use	kernels
– e.g.	kernel	PCA

	 	 	



• Example:	polynomial	kernel,	p	=	2,	d	=	2:

	 	 	

Then



Support	Vector	Machine

	 	 	



Support	Vector	Machine
• Advantages

– Regularization	parameter	C	to	avoid	overfitting
– Use	of	kernel	gives	flexibility	in	form	of	decision	boundary
– Optimization	problem	convex	– unique	solution

• Disadvantages
– Must	tune	hyperparameters (e.g.	C,	kernel	function)

• Poor	performance	if	not	well-chosen
– Must	formulate	as	binary	classification
– Difficult	to	interpret

	 	 	



Questions?

	 	 	



SVM	with	3+	classes
• SVMs	are	designed	for	binary	classification

– Separating	hyperplane naturally	separates	data	into	two	classes

• How	do	we	handle	the	case	when	the	data	belong	to	more	
than	two	classes?

• Popular	approaches:
1. One-versus-one	
2. One-versus-all

	 	 	



SVM with 3+ classes 
• One-versus-one classification 

– Construct an SVM for each pair of classes 
– For 𝐾 classes, this requires training  ௄(௄ିଵ)

ଶ
 SVMs 

– To classify a new observation, apply all ௄(௄ିଵ)
ଶ

   SVMs 
to the observation – take the most frequent class 
among pairwise results as predicted class 

– Disadvantage: computationally expensive for large  
values of K 

	 	 	



SVM	with	3+	classes
• One-versus-all classification
– Fit	1 SVMs,	in	which	class	2 represents	one	class,	and	
the	remaining	1 − 1 classes	are	combined	to	form	the	
second	class

– Distance	to	separating	hyperplane is	a	proxy	for	
confidence	of	the	classification

– For	new	observation,	choose	“highest	confidence”	
class	to	make	prediction

	 	 	



Questions?

	 	 	



	 	 	



Imbalanced	Classes
• Imbalanced	classes:	one	class	(+)	occurs	significantly	

more	frequently	in	training	set	than	the	other	(−)
– e.g.	fraud	detection,	medical	database

• Why	is	this	a	problem?
– Algorithms	perform	best	when	trained	on	roughly	even	

numbers	of	observations	in	each	class
– Poor	performance	on	underrepresented	class

	 	 	



Imbalanced	Classes
• How	can	we	improve	performance	when	we	
have	imbalanced	classes?
– Collect	more	data	for	underrepresented	class
–Weighting	of	classes
– Sampling	methods

	 	 	



Imbalanced	Classes
• Weighting	of	classes:	applying	different	weights	to	false	

negatives	in	cost	function
– e.g.	in	SVM,	larger	weights	to	penalties	for	violations	of	margin	for	

class	(−)	 than	for	class	(+):
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Imbalanced	Classes
• Sampling	Methods	– modify	set	of	training	
observations	to	make	classes	more	even	

• Balance	class	labels	by
– Undersampling class	(+)
– Oversampling	class	(−)	

	 	 	



Imbalanced	Classes
• Disadvantages	of	over/under	sampling
– Undersampling class	(+)	may	remove	important	training	
observations

	 	 	



Imbalanced	Classes
• Disadvantages	of	over/under	sampling
– Oversampling	class	(−)	may	result	in	over	fitting

	 	 	



Imbalanced	Classes
• Synthetic	Minority	Oversampling

– Method	for	oversampling	class	(−)	that	generates	new	minority	
observations	by	perturbing	existing	minority	observations:

1. Selects	observation	D(C) in	class	(−)	at	random
2. Finds	k	nearest	neighbors	of	D(C) selects	one	of	the	neighbors	

D77(C) at	random
3. New	sample	D7EF(C) is	a	perturbation	of	D(C) along	the	

direction	D77(C) −	D(C)

	 	 	



Imbalanced	Classes

	 	 	



Imbalanced	Classes

	 	 	



Imbalanced	Classes

	 	 	



Imbalanced	Classes

	 	 	



Imbalanced	Classes

	 	 	



Imbalanced	Classes

	 	 	



	 	 	



Measuring	Classifier	Performance
• In	regression,	we	can	use	a	criterion	such	as	the	
residual	sum	of	squares	to	measure	error

• For	classification,	we	need	a	measure	of	performance
– Examples:	Confusion	matrix,	Precision/Recall,	
Sensitivity/Specificity,	ROC	curve

• Consider	binary	classification	with	classes:	(+)	and	(–)	

	 	 	



Measuring	Classifier	Performance
• We	can	show	the	performance	of	the	classifier	in	a	
table	called	a	confusion	matrix:
– “Good	performance”:	TP,	TN	large	and	FP,	FN	small

	 	 	

True	Positive	(TP) False	Negative (FN)
Type	II	error

False	positive	(FP)
Type	I	error True	Negative	(TN)

True	class

Predicted	class
–+		

+		

–
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Measuring Classifier Performance 
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True positive rate (TPR)  
(recall, sensitivity) 

 
 

𝑇𝑃𝑅 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
 

 

Positive predictive value (PPV) (precision)  
 
 

𝑃𝑃ܸ ൌ   
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
 

 

False positive rate (FPR)  
 
 
 

𝐹𝑃𝑅 ൌ
𝐹𝑃

𝐹𝑃 ൅ 𝑇𝑁
 

True negative rate (SPC)  
(specificity) 

 
 

𝑆𝑃𝐶 ൌ
𝑇𝑁

𝐹𝑃 ൅ 𝑇𝑁
 

 

Measuring Classifier Performance 

TP FN 

FP TN Tr
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Measuring	Classifier	Performance
• ROC	(receiver	operating	characteristic)	curve

	 	 	

True	Positive
Rate

False	Positive	Rate

1

0
0 1

random	guessing

perfect	
classification

monotonic	
increasing

Classifier	A

Classifier	B

TPR = TP
TP+FN

FPR = FP
FP+TN



Measuring	Classifier	Performance
• Disadvantage	of	ROC	curve	- imbalanced	classes
– 1%	samples	belong	to	class	“+”	and	99%	to	class	“–”

• For	results	below	then,	TPR	=	0.9,	FPR	=	0.12 ß looks	good?
• TPR	and	FPR	do	not	capture	that	13x	as	many	FP as	TP
• Alternative:	Precision	=	0.07 (perfect:	1.0),	Recall	=	TPR	=	0.9
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Measuring	Classifier	Performance
Precision	/	Recall
• Precision:	fraction	of	samples	predicted	(+)	that	are	actually	(+)
• Recall	(true	positive	rate):	Fraction	of	(+)	samples	correctly	predicted	as	(+)
• Imbalanced	class	example:	

• Precision	=	0.07 (perfect:	1.0),	Recall	=	TPR	=	0.9	(perfect:	1.0)
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Measuring Classifier Performance 
• Precision/recall 

– Precision (Positive predictive value):    𝑃𝑃ܸ ൌ ்௉
்௉ାி௉

 
• Fraction of samples predicted as (+) that are truly (+) 

– Recall (True positive rate):   𝑇𝑃𝑅 ൌ ்௉
்௉ାிே

ൌ ்௉
௉

 
• Fraction of (+) samples correctly classified as (+) 

– Recall and precision inversely related 
– In perfect classifier, Recall = 1, Precision = 1 
– Imbalanced class example: Recall = 0.9, Precision = 0.07 
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