Intermediate Topics in Machine Learning & Deep Learning

Alexander Ioannidis **ioannidis@stanford.edu**

Institute for Computational and Mathematical Engineering, Stanford University

Intermediate Topics in Machine Learning and Deep Learning

Schedule

Day 1

Session 1: Intermediate Topics in ML (SVMs and Kernels) Session 2: Transfer Learning & Generating Labels for Deep Learning

Day 2

Session 3: Dimensionality Reduction and Variational Autoencoders (VAEs) Session 4: Representation Learning, Weakly Supervised, Semi-supervised, and self-supervised learning

- Method for supervised classification
	- $-$ Binary classification (two class)

- Generalization of *maximal margin classifier*
- *Support vector classifier*: can be applied to data that is not linearly separable
- *Support vector machine*: non-linear decision boundary

- *Maximal margin classifier*
	- $-$ Key assumption: two classes are separable by linear decision boundary

• First, we need to review *hyperplanes...*

Hyperplanes

- What is a hyperplane?
	- In d-dimensional space, a $(d-1)$ -dimensional affine subspace
		- e.g. line in 2D, plane in 3D
	- $-$ Hyperplane in d-dimensional space:

 $(\star) \ \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_d x_d = 0$

 $-$ Separates space into two half-spaces

Hyperplanes

 $-7 + 2x_1 - x_2 = 0$ 4 + 9 $x_1 + 6x_2 - 2x_3 = 0$

Idea:

Use a separating hyperplane for binary classification

Key assumption:

Classes can be separated by a linear decision boundary

Figure 9.2 , ISL 2013

To classify new data points:

Assign class by location of new data point with respect to hyperplane:

$$
\hat{Y} = \text{sign}\left(\beta_0 + \beta_1 X_1 + \dots + \beta_d X_d\right)
$$

Figure 9.2 , ISL 2013

Key assumption:

Classes can be separated by a linear decision boundary

 \rightarrow Many possible separating hyperplanes…

Figure 9.2 , ISL 2013

Mini Quiz:

Which linear decision boundary?

What criteria would you use to choose?

Figure 9.2, ISL 2013

Which linear decision boundary?

Separating hyperplane "farthest" from training data

 \rightarrow "Maximal Margin Classifier"

Figure 9.2, 9.3, ISL 2013

Maximal margin hyperplane

Hyperplane "farthest" from training data \rightarrow maximizes margin

Margin: smallest distance between any training observation and the hyperplane

Support vectors: the training observations equidistant from the hyperplane

Figure 9.3 , ISL 2013

- *Support vectors*
	- $-$ The training observations equidistant from the maximal margin (MM) hyperplane
	- $-$ "Support": MM hyperplane only depends on these observations
		- If support vectors are perturbed, then MM hyperplane will change
		- If any other training observations are perturbed, MM hyperlane not effected

• To find maximal margin hyperplane, solve:

Recall our assumption:

Classes can be separated by a linear decision boundary

What if there's no separating hyperplane?

Figure 9.4 , ISL 2013

Disadvantage:

Figure 9.5 , ISL 2013

Disadvantage:

Can be sensitive to individual observations

May overfit training data

Figure 9.5 , ISL 2013

What if there's no separating hyperplane?

Support Vector Classifier:

allows training samples on the "wrong side" of the margin or hyperplane

Figure 9.4 , ISL 2013

- *Support Vector Classifier*
	- Hyperplane-based classifier
	- $-$ Allows *some* training samples on "wrong side" of margin/hyperplane
	- $-$ *Soft margin*: margin is not a hard boundary

Figure 9.6 , ISL 2013

 X_1

- *Support Vector Classifier*
	- Hyperplane-based classifier
	- $-$ Allows *some* training samples on "wrong side" of margin/hyperplane
	- $-$ *Soft margin*: margin is not a hard boundary

- Idea: solve maximal margin problem, but allow violations of the margin
	- $-$ Impose penalty to limits number/degree of violations

• To find hyperplane for the SV classifier, solve:

- Slack variables ε_i allow for violations of the margin
	- $-\varepsilon_i=0$: training point $X^{(i)}$ is on correct side of margin
	- $\varepsilon_i > 0$: $X^{(i)}$ violates the margin
	- $\varepsilon_i > 1 : X^{(i)}$ is misclassified (wrong side of hyperplane)

- Penalty parameter $C -$ "budget" for violations
	- $-$ Allows at most C misclassifications on training set

"Misclassification budget" parameter C is selected by *cross-validation* * controls bias-variance trade-off *

Support vectors: observations on margin or violating margin

Large budget many Support Vectors

Small budget fewer Support Vectors

Figure 9.7 , ISL 2013

Disadvantage:

Linear decision boundary

Figure 9.8 , ISL 2013

Expanding Feature Space

Some data sets are not linearly separable...

But they *become* linearly separable when transformed into a *higher* dimensional space

Expanding Feature Space

Expanding Feature Space

- Linear regression \rightarrow non-linear model
	- $-$ Create new features that are functions of predictors

- Apply same technique to support vector classifier
	- $-$ Consider polynomial functions of predictors:

• Suppose our original data has d features:

$$
X = [X_1, X_2, \cdots, X_d]
$$

• Expand feature space to include 2d features:

$$
\tilde{X} = \begin{bmatrix} X_1, (X_1)^2, X_2, (X_2)^2, \cdots, X_d, (X_d)^2 \end{bmatrix}
$$

$$
\tilde{X}_1 \quad \tilde{X}_2 \quad \tilde{X}_3 \quad \tilde{X}_4 \quad \tilde{X}_{2d-1} \quad \tilde{X}_{2d}
$$

 $-$ Decision boundary will be non-linear in original feature space

Non-linear decision boundary

• Decision boundary in enlarged features space is linear:

$$
\beta_0 + \beta_1 \tilde{X}_1 + \beta_2 \tilde{X}_2 + \dots + \beta_{2d-1} \tilde{X}_{2d-1} + \beta_{2d} \tilde{X}_{2d} = 0
$$

• Decision boundary in enlarged features space is an ellipse *in the original features space*:

$$
\beta_0 + \beta_1 X_1 + \beta_2 (X_1)^2 + \dots + \beta_{2d-1} X_d + \beta_{2d} (X_d)^2 = 0
$$

- Add higher order polynomial terms to expanded features set \rightarrow number of features grows quickly
	- $-$ Large number of features becomes computationally challenging
	- We need an efficient way to work with large number of features

Support Vector Machine (SVM)

Support Vector Machine: extension that uses *kernels* to achieve *nonlinear decision boundary*

• *Kernel*: generalization of inner product

- Kernels (implicitly) map data into higher-dimensional space
	- $-$ Apply support vector classifier in high-dimensional space with hyperplane (linear) decision boundary

• Computations in support vector classifier requires only inner products of training data

$$
f(X) = \beta + \sum_{i \in S} \alpha_i \langle X^{(i)}, X \rangle
$$

• In SVM we replace inner product with kernel function

$$
f(X) = \beta + \sum_{i \in S} \alpha_i K\left(X^{(i)}, X\right)
$$

- Properties of kernels $K(X, X')$:
	- Generalization of inner product

 $K(X, X') = \langle \phi(X), \phi(X') \rangle$, ϕ feature mapping

- $-$ Symmetric: $K(X, X') = K(X, X)$
- Gives a measure of similarity between X and X'
	- If X and X' close together, then $K(X, X')$ large
	- If X and X' far apart, then $K(X, X')$ small

• Linear kernel

$$
K(X,X')=\langle X,X'\rangle
$$

• Polynomial kernel (degree p)

$$
K(X, X') = (1 + \langle X, X' \rangle)^p
$$

• Radial basis kernel

$$
K(X,X')=\exp\left(-\gamma\|X-X'\|^2\right)
$$

- Why use kernels instead of explicitly constructing larger feature space?
	- Computational advantage

$$
\phi: \mathbb{R}^d \to \mathbb{R}^D, \quad d << D
$$

$$
K(X, X') = \langle \phi(X), \phi(X') \rangle \quad \text{in } O(d)
$$

- Other machine learning methods use kernels
	- e.g. kernel PCA

• Example: polynomial kernel, $p = 2$, $d = 2$:

$$
K(X,Y) = (1 + \langle X, Y \rangle)^2 \qquad X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}
$$

Then

 $K(X,Y) = 1 + 2X_1Y_1 + 2X_2Y_2 + X_1^2Y_1^2 + X_2^2Y_2^2 + 2X_1Y_1X_2Y_2$ $\langle \phi(X), \phi(Y) \rangle$
where $\phi(X) = \begin{bmatrix} 1 \\ \sqrt{2}X_1 \\ \sqrt{2}X_2 \\ \sqrt{2}X_1X_2 \\ X_1^2 \\ X_2^2 \\ X_3^2 \end{bmatrix}$

- Advantages
	- $-$ Regularization parameter C to avoid overfitting
	- Use of kernel gives flexibility in form of decision boundary
	- $-$ Optimization problem convex $-$ unique solution
- Disadvantages
	- $-$ Must tune hyperparameters (e.g. C, kernel function)
		- Poor performance if not well-chosen
	- $-$ Must formulate as binary classification
	- Difficult to interpret

Questions?

SVM with 3+ classes

- SVMs are designed for binary classification
	- $-$ Separating hyperplane naturally separates data into two classes
- How do we handle the case when the data belong to more than two classes?
- Popular approaches:
	- 1. One-versus-one
	- 2. One-versus-all

SVM with 3+ classes

- *One-versus-one* classification
	- Construct an SVM for each pair of classes
	- For K classes, this requires training $\frac{K(K-1)}{2}$ ଶ SVMs
	- $-$ To classify a new observation, apply all $\frac{K(K-1)}{2}$ ଶ SVMs to the observation – take the most frequent class among pairwise results as predicted class
	- Disadvantage: computationally expensive for large values of *K*

SVM with 3+ classes

- *One-versus-all* classification
	- Fit K SVMs, in which class k represents one class, and the remaining $K - 1$ classes are combined to form the second class
	- $-$ Distance to separating hyperplane is a proxy for confidence of the classification
	- For new observation, choose "highest confidence" class to make prediction

Questions?

• Imbalanced classes: one class (+) occurs significantly more frequently in training set than the other $(-)$

 $-$ e.g. fraud detection, medical database

- Why is this a problem?
	- $-$ Algorithms perform best when trained on roughly even numbers of observations in each class
	- $-$ Poor performance on underrepresented class

- How can we improve performance when we have imbalanced classes?
	- Collect more data for underrepresented class
	- Weighting of classes
	- Sampling methods

- Weighting of classes: applying different weights to false negatives in cost function
	- $-$ e.g. in SVM, larger weights to penalties for violations of margin for class $(-)$ than for class $(+)$:

$$
\sum_{i=1}^{n} \epsilon_i < C \quad \text{becomes}
$$
\n
$$
\left(\sum_{i: Y^{(i)} = (+)} \epsilon_i\right) + \omega \left(\sum_{i: Y^{(i)} = (-)} \epsilon_i\right) < C
$$

- Sampling Methods modify set of training observations to make classes more even
- Balance class labels by
	- $-$ Undersampling class $(+)$
	- $-$ Oversampling class $(-)$

- Disadvantages of over/under sampling
	- Undersampling class (+) may remove important training observations

- Disadvantages of over/under sampling
	- Oversampling class (−) may result in over fitting

- Synthetic Minority Oversampling
	- Method for oversampling class (−) that generates new minority observations by perturbing existing minority observations:
	- 1. Selects observation $X^{(-)}$ in class (-) at random
	- 2. Finds k nearest neighbors of $X^{(-)}$ selects one of the neighbors $X_{nn}^{\left(-\right)}$ at random
	- 3. New sample $X_{new}^{(-)}$ is a perturbation of $X^{(-)}$ along the direction $X_{nn}^{(-)} - X^{(-)}$

- In regression, we can use a criterion such as the residual sum of squares to measure error
- For classification, we need a measure of performance
	- Examples: Confusion matrix, Precision/Recall, Sensitivity/Specificity, ROC curve
- Consider binary classification with classes: $(+)$ and $(-)$

- We can show the performance of the classifier in a table called a *confusion matrix*:
	- $-$ "Good performance": TP, TN large and FP, FN small

Precision/recall

Precision/reca

• ROC (receiver operating characteristic) curve

- Disadvantage of ROC curve imbalanced classes
	- -1% samples belong to class "+" and 99% to class "-"
		- For results below then, $TPR = 0.9$, $FPR = 0.12$ \leftarrow looks good?
		- TPR and FPR do not capture that **13x as many FP as TP**
		- *Alternative*: Precision = 0.07 (perfect: 1.0), Recall = TPR = 0.9

Precision / Recall

- Precision: fraction of samples predicted $(+)$ that are actually $(+)$
- Recall *(true positive rate):* Fraction of (+) samples correctly predicted as (+)
- *Imbalanced class example*:
	- Precision = 0.07 (perfect: 1.0), Recall = TPR = 0.9 (perfect: 1.0)

- Precision/recall
	- $-$ Precision (Positive predictive value): $PPV = \frac{TP}{TP+FP}$
		- Fraction of samples predicted as $(+)$ that are truly $(+)$
	- $-$ Recall (True positive rate): $TPR = \frac{TP}{TP+FN} = \frac{TP}{P}$
		- Fraction of (+) samples correctly classified as (+)
	- Recall and precision inversely related
	- $-$ In perfect classifier, Recall = 1, Precision = 1
	- Imbalanced class example: Recall = 0.9, Precision = 0.07

