Intermediate Topics in
Machine Learning and Deep Learning
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Session 3.1: Representation Learning

Tuesday, August 17, 9:30—11:00 AM
Instructor: Sherrie Wang



What is representation learning?

Representation learning is a broad concept in machine learning that refers to
automatically discovering representations, or features, from raw data.
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Another term for representation is
feature, and you will hear the
term feature space or embedding
space used to describe the
k-dimensional space of learned
representations.



What is representation learning?

Representation learning can be supervised or unsupervised.

e Supervised example: neural networks learn a representation before the last
layer of the network (the classifier) that will result in good performance
e Unsupervised examples: PCA, autoencoder
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What makes a representation good?

1. It makes subsequent
(“downstream”) tasks easier.

2. It teases apart the factors of i ﬂ
variation in the data into dependent ix
components.

3. ltis interpretable.

These objectives can sometimes align, . _ N
This is related to interpretability,

but often they compete with each other. but extends beyond that, since
features that are “disentangled”
can be manipulated more easily.



Feature extraction from neural networks

Early layers of a neural network can be viewed as a feature extractor.

If we’re interested in the features themselves, we can take the output of the layer
before the classifier for each sample of the data as an embedding of that sample.
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Transfer learning and representation learning

Transfer learning can be viewed through the lens
of representation learning.

Task A Task B Task C
e Pre-training = use the representations learned oupitC__ )C__ D) C )
in a pre-trained model to perform well on a
target task.
e Domain adaptation = aligning the shared _

subsets of &
factors

representations of the source and target
domains to enable a model trained on the
source task to transfer to the target task.

e Multi-task learning = share representations input
across multiple tasks.




Unsupervised representation learning

Given a task and enough labels, supervised
learning can learn appropriate representations
and solve the task well.

As we saw previously, obtaining labels can be
expensive and difficult to scale.

Often, we have a lot more unlabeled data
available than labeled data. Can we use them
in some way?

ImageNet has 14 million labeled images, but
there are 10+ billion images on Google images.



Self-supervised representation learning

What if we can get labels for free for
unlabeled data and train on this synthetic This strategy is used a lot with language data.
task to learn representations?

» Predict any part of the input from any Time —
other part. f ‘
. . . . . » Predict the from the past.
Achieve this by having the task be: predict
. . » Predict the from the recent past. ’ ﬂ
part of the input using the rest. ,
» Predict the from the present. ’ '
» Predict the from the bottom. ) 4 ’
» Predict the occluded from the visible ' !
» Pretend there is a part of the input you « Past Future —

Th'S |S self'super\’ised Iearning. don’t know and predict that. beesent Slide: LeCun



Self-supervised representation learning

dataset (no labels)

The self-supervised task is called the pretext
task.

We don’t actually care about the pretext task
itself.

However, with these features learned
through self-supervision, we hope to do well
on a downstream task with fewer labels.
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Self-supervision for image data

Common workflow:

e Train a model on one or more pretext tasks with unlabeled images.
e Use an intermediate feature layer of this model as input to a logistic
regression classifier on ImageNet classification.

e The classification accuracy quantifies how good the representation is.



Pretext tasks for images

To perform the pretext task, the
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Pretext tasks for images

Sample random patches of an image and ask the model to figure out the relative
position between the patches.

Example:




Pretext tasks for images

Sample random patches of an image and create a “jigsaw puzzle” for the model
to solve.
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Pretext tasks for images

Colorization: predict the color version of the image from the grayscale version.




Pretext tasks for images

Generative modeling: reconstruct the original input while learning a good latent
representation.
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Pretext tasks for images

Inpainting: fill in a missing piece in the image (“context encoder”)
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Pretext task for video

Determine whether a sequence of frames from a video is placed in the correct
temporal order.

(a) Data Sampling (b) Triplet Siamese network for sequence

Positive Tuples - verification
» i Input Tuple &5 AlexNet architecture

fo fe fa | 384 384 256
! : i fe8.
o

High
motion
window

classification

Bias the
sampling
to high
motion
windows

[ SREEEN Shared parameters



Learning word embeddings
Unlike image pixels, words are not
already represented by a list of numbers.

How do we give each word a
representation?

Self-supervision using a corpus
(a collection of written texts).
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Word2vec

One of the most popular methods for

learning word embeddings. SkipGram

Suppose we have the sentence: T C°mpf”s°” f ”IS
This is a visual comparison.

Using a skip-gram model, we want the l l l l

neural network to predict a target word visual  visual  visual  visual

(“visual”) using words to its left and right target word

By: Kavita Ganesan
” G

(context words, “is”, “a”, “comparison”).



Word2vec

The neural network’s input
IS a one-hot vector
representing the input
word, and the label is a
one-hot vector
representing the target
word. The network’s
output is a probability
distribution over all words
in the corpus.

Input Vector
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Hidden Layer
Linear Neurons

X
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Output Layer
Softmax Classifier
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10,000
neurons

Probability that the word at a
randomly chosen, nearby
position is “abandon”

... “ability”

... “able”

... “zone”



Word2vec

Word2vec is a shallow 2-layer neural
network. The hidden layer’s weight
matrix can therefore be interpreted
as a lookup table for the word
vectors.

0 001 0 x |4 6 13| =1[10 12 19]

10,000 words

Hidden Layer
Weight Matrix

300 neurons

—

10,000 words

Word Vector
Lookup Table!

300 features




Word2vec

The cool part: this simple algorithm captures the relationship between words in
the embedding space!

For example: “Brother” - “Man” + “Woman” = “Sister” <« closest vector

Italy \Madrid
Germany \ Rome
Berlin
man walked
. ‘ Turkey \
g Ankara
® *.~* woman
i . . O swam Russia ——0ouu_ =
king o ® i Moscow
T walking Canada ttawa
queen \ Japan — Tokyo
/\ / o e —
swimming China —————————— Beijing

Male-Female Verb tense Country-Capital



Contrastive learning
Learn an embedding space in which similar samples stay close to each other
while dissimilar ones are far apart.

Can be supervised or unsupervised. (Unsupervised is part of self-supervised
learning.)

In the supervised case, uses contrastive loss.
Loon (X1, X, 6) = 1y; = y1llfo(x) — fo&)IIZ + Ty # y;1 max(0, € — |fp(x;) — fo(x)ll2)?
Negative

Anchor LEARNING
Negative

Anchor .
Positive Positive



Tile2Vec: Unsupervised representation learning for
spatially distributed data

- e Satellite imagery often
. }'m . . . . exhibits high within-class
i ; | variance in RGB / spectral

space

Grapes Tomatoes Open space

e (Can we use the structure
inherent in Earth observation
to learn a better feature
space?




Learning a better feature space

Gray/brown

/ . RGB space .

Learn this - Mapping

Tomatoes



Study area and land cover dataset




Algorithm: Tile2Vec triplet sampling

Anchor Neighbor Distant

Anchor Nelghbor

Urban Urban Grapes
- P S
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Almonds Almonds

Almonds Almonds

Distant

Urban

Urban

HECEED

Tobler’s First Law of
Geography:

“Everything is related to
everything else,

but near things are more
related than distant things.”



Algorithm: Tile2Vec model training

anchor
anchor tile representation
' o (1))

~ / neighbor

representation

nelghbor tile

convolutlonal neural network
B fo m— f (t1)

distant tile representation

L(ta;tn;ta) = [[[fo(ta) = fo(tn)ll2 = | fo(ta) = fo(ta)ll2 +m]



Comparison with supervised, end-to-end training

e When Tile2Vec features are used with a logistic regression classifier, results outperform
supervised CNNs trained directly on labels up to 50k labeled samples
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Session 3.2: Weak Supervision

Tuesday, August 17, 9:30—11:00 AM
Instructor: Sherrie Wang

icme-workshops.github.io/intermediate-ml



Back to the label scarcity problem

Traditional Supervision:
Have subject matter

experts (SME
more trai

“—

Too expensive!

Activ

Estimate which points

are mo

s) hand-label
ning data

|

e Learning:

st valuable to

solicit labels for

How to get more labeled training data?
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Semi-supervised Learning: Weak Supervision: Get Transfer Learning: Use
Use structural assumptions lower-quality labels more models already trained
to automatically leverage efficiently and/orata on a different task
unlabeled data higher abstraction level
\ 4
Get cheaper, lower-quality Get higher-level supervision Use one or more (noisy /

labels from non-experts over unlabeled data from SMEs  biased) pre-trained models
to provide supervision

Heuristics Distant Constraints Expected

.. . Invariances
Supervision distributions



Weak supervision

High-quality labels are expensive and
time-consuming to generate, but often
low-quality labels already exist or are
much cheaper / faster to generate.

Can we make use of these low-quality
labels?

Low quality = labels exist at some higher
level than desired, or contain noise

hi
- leax'IrIJlia;g lxillzdel #

pixel-level labels

partial annotation bounding box

: \
image-level label

full supervision

weak supervision




Weak supervision

If the main problem with labels is that they are noisy, and the noise is random --
can still use them to train a model.

For model evaluation, you want a clean, high-quality set of labels.

High quality labels Noisy labels




Example: Using hashtags as weak labels for images

Researchers from Facebook used
Instagram images and hashtags to
pre-train a model for image
classification.

When the model’s features were used to
classify ImageNet, performance was
excellent.

ImageNet top-1 accuracy (in %)
& w (=2} ~ o0 O
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Target task: ImageNet

Source task
ImageNet (target = source) 1
Instagram (940M, 1.5k tags)
Instagram (1B, 8.5k tags)
Instagram (1B, 17k tags)
Instagram (3.5B, 17k tags)

84.2 g3 4 83.6 842

55,2 55.6 55.8 56.0
3.5

48.4 48,2 48.549.0 7

1,000 5,000 9,000
Number of classes in target task (ImageNet)




Example: Image-level and single pixel labels for

cropland segmentation

(a) Input Image (b) Full Segmented Label (c) Weak Label #1: (d) Weak Label #2:

Single Pixel Image-level

1

I
-

Can we use image and
single pixel labels to
supervise segmentation?

How many labels do we
need?



Image labels: adding class activation map to U-Net
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Single pixel labels: masking U-Net output
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Study area and cropland segmentation

87°W

86°W

- 42°N

87°W

86°W

41°N

40°N

39°N

38°N

37°N

Satellite image over the
Midwestern US

USDA’s Cropland Data Layer
(CDL) as ground truth

Tiles of 50 x 50 pixels
(200,000 images)



Conclusion: Weak labels can supervise segmentation
with relatively few labels

Image-Level Labels Pixel-Level Labels
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Example segmentation

(a) (b) (c) (d)

Landsat  Ground Truth Pixel Labels Image Labels
Composite (CDL)

Random Masked U-Net Random Cropland U-CAM
Forest

Activation

Forest




Thanks for attending this workshop!

This is the first iteration of the Intermediate ML and DL workshop.

Please let us know which topics were the most interesting/useful and which ones
you wish had been covered in your reviews.

It won’t be possible to cover all intermediate topics, but hopefully we can
converge on the most interesting topics over time!



